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Abstract

In this work, the momentum and thermal boundary layers over a continuously stretching surface with a uniform-shear free stream
were investigated. Based on the boundary layer assumptions, the similarity equations were obtained, which were solved numerically. The-
oretical analysis was conducted for certain special conditions. The solution domain for the momentum boundary layer was theoretically
estimated and compared with the numerical results. It is found that the interaction of uniform-shear free stream and the wall stretching
velocity greatly affects the fluid motion and heat transfer characteristics. Dual solutions exist for the stretching parameter
c > cc = �0.596985. There is one solution for c = cc and no solution for c < cc. The effects of the Prandtl number, Pr, the temperature
power index, m, and the wall stretching parameter, c, on the heat transfer behaviors were analyzed and discussed. A general exact ana-
lytical solution of thermal boundary layers was derived for non-stretching wall condition with c = 0 and arbitrary values of Pr and c.
Analytical solutions were also given for m ¼ � 2

3
and m = 0 with arbitrary values of Pr and m. Interesting observations were found

for negative wall stretching parameter, negative temperature power index, and the lower solution branch.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Similarity solution; Stretching surface; Power-law shear flow; Uniform-shear free stream
1. Introduction

The boundary layer flow over a continuously stretching
surface is an often-encountered problem in many engineer-
ing processes. There are lots of applications in industries
such as the hot rolling, wire drawing, glass–fiber produc-
tion, etc. [1–3]. In these processes, it is very important to
control the drag and the heat flux at the stretching surface
in order to obtain good product quality.

The pioneering work in this area was conducted by Saki-
adis [4,5]. Sakiadis analyzed the boundary layer assump-
tions and the governing equations of the problem, and
the boundary layer flow on a continuously stretching sur-
face with a constant speed was investigated. His work
was further verified by Tsou et al. [6] experimentally. The
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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thermal boundary layer with a constant wall temperature
was also discussed [6]. Following these works, the bound-
ary conditions on the surface were generalized by other
researchers [7–12]. The velocity of the surface was extended
to be a function of distance from the slot, where the surface
was stretched out. A power-law function was the most
common case. Thermal boundary conditions included a
power-law surface temperature or a power-law surface heat
flux. Mass transfer such as fluid suction and injection was
also considered on the stretching surface. The boundary
layers over a stretching surface with a parallel constant
velocity free stream were investigated [13–15]. The interac-
tion of free-stream velocity and wall stretching speed
greatly changed the momentum and heat transport in the
boundary layers.

In recent years, a bulk of studies in power-law shear dri-
ven boundary layer flows were published in various jour-
nals [16–26]. An early work of the boundary layers with
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Nomenclature

f dimensionless free-stream function
f0 first derivative of f
f00 second derivative of f

f000 third derivative of f

f0000 fourth derivative of f

g dimensionless temperature
g0 first derivative of g

g00 second derivative of g

m power exponent for the wall temperature distri-
bution

qw wall heat flux
t dummy variable
u fluid velocity in x direction
v fluid velocity in y direction
x coordinate along the free-stream direction
y coordinate perpendicular to the free-stream

direction
z defined new variable
L characteristic length of the current flow configu-

ration
Pr Prandtl number

T fluid temperature
Tw surface temperature
Tr reference temperature
T1 free-stream fluid temperature
Ui induced free-stream velocity due to wall stretch-

ing
Uw surface stretching velocity
U1 free-stream velocity
Z defined new variable

Greek symbols

a thermal diffusivity
b uniform-shear strength
d dimensionless wall stress, f0(0)
� dummy variable
g similarity variable
c wall stretching parameter
m kinematic viscosity
W stream function
C gamma function
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a shear flow free stream was published by Wang to study
the mixing layers driven by a shear flow [16]. This work
was further generalized to a power-law shear driven free-
stream flow [17]. With a shear flow in the free stream, the
free stream is no longer rotation-free. It was found that
the flow motion and momentum transport behaviors were
quite different from a rotation-free flow [17]. The power-
law shear driven flow with mass transfer at the wall was
studied for some velocity power indices [18]. Solution
domain and the boundary layer characteristics of different
power indices were discussed [19,20]. Power series solution
was presented through the application of some analytical
techniques and the convergence characteristics were ana-
lyzed for the momentum and thermal boundary layers
[21]. The heat transfer characteristics were also investigated
for different power indices and some analytical solutions
were presented [19,21–26]. Analytical solutions for the spe-
cial cases for a power index of �1/2 with an adiabatic wall
were presented and discussed [22]. Magyari and Weidman
reported the exact solutions for the boundary layers of
an Airy wall jet with preheating [23] or constant wall heat
flux [24]. The thermal boundary layer with a uniform-shear
free stream was studied and compared with the famous
Blasius flow [25]. It was shown that the dependence of
the wall heat flux on the Prandtl numbers were quite differ-
ent for both flow configurations. More analytical solutions
were given in an earlier paper by Wang for the heat transfer
problem of a Couette shear free stream [26]. However, in
most of the works, the flat surface was kept stationary with
no wall stretching. The interaction of free stream and wall
stretching greatly affects the momentum and heat transport
in the boundary layer over the surface. As mentioned by
Wang [16] when there was a fluid velocity at the mixing
layer interface, the free stream was no longer a pure Cou-
ette flow profiles but with an induced fluid velocity at large
distance from the interface. The objective of this work is to
study the influence of uniform-shear flow on the boundary
layers over a stretching surface. Similarity equations of the
boundary layers over a stretching surface are obtained and
solved numerically. Influences of various parameters on the
boundary layers are discussed.
2. Mathematical formulation

Consider a steady, two-dimensional laminar flow over a
continuously stretching surface in the presence of a free
stream with uniform shear dU1

dy ¼ b. The wall stretching
velocity is Uw = Uw(x) and the wall temperature is
Tw = Tw(x) with an ambient temperature T1. This uni-
form-shear flow includes both the classical Couette flow
profiles, namely U1 = by, and linear flow of y with a cer-
tain induced fluid velocity due to wall stretching, say
U1 = by + c(x). Based on the later discussion, it is shown
that cðxÞ / x

1
3. The x-axis runs along the stretching surface

in the direction of the motion and the y-axis is perpendic-
ular to it. Based on boundary layer assumptions [16,27],
the governing equations of this problem become

ou
ox
þ ov

oy
¼ 0; ð1Þ
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u
ou
ox
þ m

ou
oy
¼ v

o2u
oy2

; ð2Þ

u
oT
ox
þ v

oT
oy
¼ a

o2T
ox2

ð3Þ

with the boundary conditions

uðx; 0Þ ¼ U wðxÞ; vðx; 0Þ ¼ 0;
ouðx;1Þ

oy
¼ b;

T ðx; 0Þ ¼ T wðxÞ; T ðx;1Þ ¼ T1; ð4Þ

where u and v are the velocity components in the x and y
directions respectively, m is the kinematic viscosity, a is
the thermal diffusivity and T is the fluid temperature. The
problem can be rescaled with a characteristics length
L ¼

ffiffi
v
b

q
. The stream function, similarity variable, and tem-

perature profiles can be posited in the following form [25]:

Wðx; yÞ ¼ m
x
L

� �2
3

f ðgÞ; ð5aÞ

T ðx; yÞ ¼ T1 þ T r

x
L

� �m
gðgÞ; ð5bÞ

g ¼ x
L

� ��1
3 y
L
; ð5cÞ

where Tr is a reference temperature. With these defini-
tions, the velocities are expressed as u ¼ mL�

4
3x

1
3f 0ðgÞ and

m ¼ 1
3
mL�

2
3x�

1
3½f 0ðgÞg� 2f ðgÞ�. Therefore, the similarity

equations are obtained as follows:

3f 000 þ 2ff 00 � f 02 ¼ 0; ð6Þ
3

Pr
g00 þ 2fg0 � 3mf 0g ¼ 0 ð7Þ

with boundary conditions (BCs)

f ð0Þ ¼ 0; f 0ð0Þ ¼ c; f 00ð1Þ ¼ 1; gð0Þ ¼ 1;

and gð1Þ ¼ 0: ð8a–eÞ

The wall stretching velocity is UwðxÞ ¼ mL�
4
3x

1
3c / x

1
3, and c

is the wall stretching parameter. Here c can be either a po-
sitive number or a negative number. For a positive value of
c, the boundary layer is the commonly encountered for-
ward boundary layer as discussed by many researcher in
the literature. However, for a negative value of c, the
boundary layer belongs to the so-called backward bound-
ary layer [28] as discussed by Goldstein. For a backward
boundary layer, namely the surface moving from +1 to
the slot, the fluid loses any memory of the perturbation
introduced by the leading edge, say the slot. Therefore,
for different wall stretching parameters, the two different
boundary layers show quite distinct physical phenomena.
The wall temperature has a power-law distribution with
the distance from the origin. Based on the derivation, it
is known that similarity equations only exist for a 1/3-
power wall stretching velocity and a power-law wall tem-
perature. Since there is no general analytic solutions for
the similarity equations, Eqs. (6) and (7) combined with
the boundary conditions (8a–e) were solved by using the
so-called shooting method [27] to convert the boundary va-
lue problem to an initial value problem. A fourth-order
Runge–Kutta integration scheme was adopted to solve
the applicable initial value problem [27].

3. Results and discussion

3.1. Momentum boundary layer

The momentum boundary layer equation can be further
analyzed by differentiating Eq. (6) as follows:

3f
0000 þ 2ff 000 ¼ 0 ð9Þ

with BCs

f ð0Þ ¼ 0; f 0ð0Þ ¼ c; f 00ð1Þ ¼ 1; f 000ð0Þ ¼ c2

3
:

ð10a–dÞ
Eq. (9) can be integrated twice as

f 00ðgÞ ¼ c2

3

Z g

0

e
�2

3

R t

0
f ð�Þd�

dt þ d; ð11Þ

where d = f00(0). Evaluating f00(1) yields

c2

3

Z 1

0

e
�2

3

R t

0
f ð�Þd�

dt þ d ¼ 1$ d

¼ 1� c2

3

Z 1

0

e
�2

3

R t

0
f ð�Þd�

dt: ð12Þ

Based on the physical configuration, it is expected that for
positive stretching, c > 0; f ðgÞ > 1

2
g2, and for negative

stretching, c < 0; f ðgÞ < 1
2
g2. However, as will be discussed

in the numerical solutions, this analysis is only valid for the
upper solution branch. Substituting these conditions into
Eq. (12) yields for c > 0

d > 1� c2

3

Z 1

0

e�
g3

9 dg ¼ 1�
C 1

3

� �
c2

3
ffiffiffi
33
p

¼ 1� 0:619157c2 ð13Þ

and for c < 0

d < 1� c2

3

Z 1

0

e�
g3

9 dg ¼ 1�
C 1

3

� �
c2

3
ffiffiffi
33
p : ð14Þ

From Eq. (11), it is seen that f00(g) is a monotonously
increasing function of g and f00(g) 2 [d, 1]. Then it is ob-
tained dg + c < f0(g) < g + c, which yields

dg2

2
þ cg < f ðgÞ < g2

2
þ cg: ð15Þ

Plugging Eq. (15) into (12) yields

1� c2

3

Z 1

0

e�
g3

9 �
cg2

3 dt > d > 1� c2

3

Z 1

0

e�
dg3

9 �
cg2

3 dt: ð16Þ

From the left-hand side of Eq. (16) one obtains for

c > 0;
R1

0
e�

g3

9 �
cg2

3 dt < Cð13Þffiffi
33p . However for c < 0, there are

some interesting results. Based on the left-hand side of
Eq. (16), a function h(c) can be obtained as



2202 T. Fang / International Journal of Heat and Mass Transfer 51 (2008) 2199–2213
hðcÞ ¼ 1� c2

3

Z 1

0

e�
g3

9�
cg2

3 dt: ð17Þ

The right-hand side of Eq. (16) generates another function
in implicit form

1� c2

3

Z 1

0

e�
dg3

9 �
cg2

3 dt � d ¼ 0$ d ¼ pðcÞ: ð18Þ

Eqs. (17) and (18) provide much better estimation of the
solution domain as shown in a later section compared with
the numerical solutions. However, it should be noticed that
Eq. (18) is only valid for d P 0 due to the definite integral
in the equation.

By using a new variable transformation f ðgÞ ¼ffiffiffi
c
p

F ð ffiffifficp gÞ ¼ ffiffiffi
c
p

F ðzÞ, it is obtained

3F
0000 þ 2FF 000 ¼ 0 ð19Þ

with boundary conditions

F ð0Þ ¼ 0; F 0ð0Þ ¼ 1; F 00ð1Þ ¼ 1ffiffiffiffi
c3

p ; F 000ð0Þ ¼ 1

3
:

ð20a–dÞ
The prime denotes differentiation with respect to z. Eq. (19)
is valid for any valve of c. For a very large value of c,
F00(1) = 0. By numerical integration, it is obtained
F00(0) = �0.677648. Therefore, for very large c, f00(0) =
�0.677648c1.5.

Since there is no general analytical solution for the sim-
ilarity equations, numerical technique has to be used to
solve the boundary value problems. The fourth order Run-
ge–Kutta integration scheme was used in the shooting tech-
nique [27]. The code was validated using the previous
reported values from references [16,25]. During the compu-
Fig. 1. The solution domain for the mo
tation, the shooting error was controlled less than 10�6.
The momentum boundary layer equation was solved first
and followed by the thermal boundary layer. The solution
domain for Eq. (6) with BCs ((8a–c)) is illustrated in Fig. 1.
It is seen that the solution only exists for a certain range of
wall stretching parameter c. There is a critical wall stretch-
ing parameter, cc = �0.596985. When c < cc, there is no
solution. When c = cc, there is only one solution. There
are dual solutions for c > cc. Some typical values of f00(0)
for different values of the wall stretching parameter are tab-
ulated in Table 1 for the two solution branches. For a small
wall stretching parameter with jcj close to zero, the wall-
shear stress becomes less with either positive or negative
stretching compared with the non-stretching wall condi-
tion. As shown in Fig. 2, a closer look at the negative wall
stretching solution domain indicates that when
�0.30015 < c < 0, the wall-shear stress becomes negative
showing more reversal flow for the lower solution branch.
The wall-shear stress becomes zero when c = �0.30015 or
c = 1.61091, and the latter was first discussed by Wang
[16]. The estimated solution domains are also shown in
Fig. 2. Eq. (16) does give a better estimation than
Eqs. (13) and (14). Especially for Eq. (18), it closely fol-
lows the real solution domain and also provides a good
estimation for the dual solution domain. For a positive c,
f00(0) decreases with the increase of c for both solution
branches. As discussed above, for a very large c, f00(0)
?�0.677648c1.5. Another interesting result is that with
wall stretching, the free-stream velocity is no longer a pure
Couette shear flow profile. There is an induced velocity due
to the wall movement, which was noticed by Wang [16].
The non-dimensional induced velocity can be expressed
by Ui = limg?1f0(g)�g, which is shown in Fig. 3. It is seen
mentum boundary layer equation.



Table 1
Typical values of f00(0) at different wall stretching parameters for the two solution branches

c f00(0) lower branch f00(0) upper branch c f00(0) lower branch f00(0) upper branch c f00(0) lower branch f00(0) upper branch

5.0 �8.012006 �5.512634 2.0 �2.084092 �0.443590 �0.1 �0.017703 0.993440
4.5 �6.857851 �4.495868 1.5 �1.370725 0.114963 �0.2 �0.018388 0.971925
4.0 �5.764323 �3.541548 1.0 �0.762885 0.562553 �0.3 �0.000045 0.931424
3.5 �4.735123 �2.653668 0.5 �0.285126 0.874245 �0.4 0.044824 0.864452
3.0 �3.774719 �1.837069 0.2 �0.082120 0.977493 �0.5 0.134657 0.752585
2.5 �2.888659 �1.097782 0.1 �0.034376 0.994114 �0.59 0.345647 0.521823

Fig. 2. Comparison of the numerical solution domain and theoretical estimation.
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that positive wall stretching leads to a positive induced
velocity for the upper solution branch and negative stretch-
ing and lower solution branch result in a negative induced
velocity. This argument has been used in the derivation of
Eqs. (13) and (14). However, this induced flow is over-
whelmed by the free stream at large distance from the wall.
Interesting observation is found for negative wall stretch-
ing and the lower solution branch for positive stretching.
The induced velocity becomes more negative with the tran-
sition from the upper solution branch to the lower solution
branch. It is expected that Ui ? �1 when c ? �0 for the
lower solution branch. This induced flow is similar to the
mass suction or mass blowing at the wall. For a positive
induced velocity, the velocity profile is somehow sucked
to the wall, while for a negative one, the velocity profile
is blown away from the wall, which has similar effects to
the moving-wall boundary layer [29–32]. For the condition
with Ui ? �1, the velocity profile is similar to a hard
blowing problem and is located much further away from
the wall with near zero wall stress. For the lower solution
branch of positive stretching, as the stretching parameter
increases, the induced fluid velocity gradually increases
from �1 to a certain negative value.
In order to further understand the effects of the wall
stretching parameter on the momentum boundary layers,
some examples of the velocity profiles are illustrated in
Figs. 4 and 5. As shown in Fig. 4 for negative wall move-
ment, the velocity profiles move further away from the
wall, which has a similar effect to the mass blowing at the
wall compared with the Couette flow profile plotted in
the same figure. Two solutions for c = �0.4 are also shown
in the plots. Compared with the upper branch, the wall
stress becomes much less and the velocity profile becomes
much further away from the wall for the lower solution
branch. The lower solution branch is very different from
the upper solution branch. For negative stretching param-
eter, there is always a reversal flow. Velocity profiles for a
positive stretching parameter are shown in Fig. 5. For a
large positive wall stretching parameter, i.e. c = 3.0, the
fluid near the wall is dragged by the wall not by the free-
stream shear. There is a region between the wall and the
free stream with a minimum fluid velocity. Due to positive
wall stretching, the velocity profiles are drawn closer to the
wall like a certain kind of flow suction. For a positive
stretching parameter, the lower solution branch also shows
some reversal flow as seen in Fig. 5. The physical meaning



Fig. 3. The induced free-stream velocity for different wall stretching parameter.

Fig. 4. Examples of the velocity and shear stress profiles for c = 0 and c = �0.4.
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of the lower solution branch is worthy of further investiga-
tion. The wall-shear-free velocity profiles are shown in
Fig. 6. Compared with the large wall stretching conditions,
the minimum velocity occurs on the wall and monoto-
nously increases with the increase of the distance from
the wall.
3.2. Thermal boundary layer

The thermal boundary layer equation is a linear second-
order ordinary differential equation (ODE). Under certain
conditions, analytical solutions can be obtained as shown
below.



Fig. 6. The velocity and shear stress profiles for shear-free wall stretching parameters.

Fig. 5. Examples of the velocity and shear stress profiles for c = 3.0.
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3.2.1. Analytical solution for m = �2/3 and m = 0

When m = �2/3, Eq. (7) becomes

3

Pr
g00 þ 2fg0 þ 2f 0g ¼ 0: ð21Þ
The solution reads

gðgÞ ¼ Ce
�2Pr

3

R g

0
f ðtÞdt þ g0ð0Þe�

2Pr
3

R g

0
f ðtÞdt

Z g

0

e
2Pr
3

R t

0
f ð�Þd�

dt:

ð22Þ
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Based on the boundary conditions, it is obtained

gðgÞ ¼ e
�2Pr

3

R g

0
f ðtÞdt

1�
R g

0
e

2Pr
3

R t

0
f ð�Þd�

dtR1
0

e
2Pr
3

R t

0
f ð�Þd�

dt

0
@

1
A: ð23Þ

Because
R1

0 e
2Pr
3

R t

0
f ð�Þd�

dt!1, the solution becomes

gðgÞ ¼ e
�2Pr

3

R g

0
f ðtÞdt

: ð24Þ
The wall heat flux is qw ¼ kT r

L ðxL Þ
m�1

3g0ð0Þ. For this case, the
wall becomes adiabatic with no heat transfer. This case cor-
responds to a special situation with a heating source at the
leading edge and the total heat energy is conserved in the
fluid as it flows along the wall.

Another case is for m = 0, the solution becomes

gðgÞ ¼ 1�
R g

0
e
�2Pr

3

R t

0
f ð�Þd�

dtR1
0

e
�2Pr

3

R t

0
f ð�Þd�

dt
: ð25Þ

The non-dimensional wall heat flux is

g0ð0Þ ¼ � 1R1
0

e
�2Pr

3

R t

0
f ð�Þd�

dt
: ð26Þ
3.2.2. Exact solution for c = 0 and arbitrary m

When there is no stretching on the surface, Eq. (7)
becomes

3

Pr
g00 þ g2g0 � 3mgg ¼ 0: ð27Þ

Using an new variable as z ¼
ffiffiffiffiffiffiffi
Prg3
p

yields

g00 þ z2

3
g0 � mzg ¼ 0: ð28Þ

There is an analytical solution for the above equation for
non-zero m as

gðgÞ ¼ U �m;
2

3
;� Prg3

9

� �
� 3

4
3

�
C 2

3

� �
Cð1þ mÞ

C 4
3

� �
C 2

3
þ m

� � gU
1

3
� m;

4

3
;� Prg3

9

� �
; ð29Þ

where U(a,b,x) is the confluent hypergeometric function or
the first kind of Kummer function [33], and C(x) is the
Gamma function. The wall heat flux becomes

�g0ð0Þ ¼ 3�
2
3
C 2

3

� �
Cð1þ mÞ

C 4
3

� �
C 2

3
þ m

� � Pr
1
3: ð30Þ

Based on the properties of the Gamma function, when x is
a non-positive integer number, jC(x)j?1. Therefore, it is
concluded that the wall becomes adiabatic for
mþ 2

3
¼ 0;�1;�2;�3; . . ., and there is no finite solution

when m + 1 = 0, �1, �2, �3, . . .. These findings generalize
the previous results [25,26]. A limiting situation is for
Pr ?1, in this case, the thermal boundary layer is very
thin compared with the momentum boundary layer Eq.
(7) can be approximated as

3

Pr
g00 þ 2cgg0 � 3mcg ¼ 0: ð31Þ
With a new variable Z ¼ g
ffiffiffiffiffiffiffiffiffiffi
Prjcj

p
, it is obtained for c > 0

g00 þ 2

3
gg0 � mg ¼ 0: ð32Þ

And for c < 0

g00 � 2

3
gg0 þ mg ¼ 0: ð33Þ

The solution reads for c > 0

gðZÞ ¼ e�
Z2

3 ZC 1þ3m
4ð ÞU 1þ3m

4 ;
3
2;

Z2

3

� �
ffiffiffiffiffiffi
3p
p ; ð34Þ

where Uð1þ 3m
4
; 3

2
; Z2

3
Þ is the second kind of Kummer func-

tion [33]. Consequently, the wall heat flux becomes

�gð0Þ ¼ 2ffiffiffi
3
p C 1þ 3m

4

� �
C 1

2
þ 3m

4

� � ffiffiffiffiffiffiffi
Prc

p
; c > 0: ð35Þ

There is no solution for Eq. (33) satisfying the boundary
conditions. For example, for m = 0, solution of Eq. (33)
is gðZÞ ¼ Ae

Z2

3 , which does not satisfy the boundary at
Z ?1. Another example is for m ¼ � 2

3
. The solution

reads gðZÞ ¼ e
Z2

3 ½1þ g0ð0Þ
R Z

0
e�

t2
3 dt� and it is obvious that

the boundary condition is not satisfied at Z ?1. These re-
sults are based on the approximated Eq. (31) and do not
mean that there is no solution for negative c for a large Pra-
ndtl number. It does show that this approximation is not
applicable for a negative c.

As we discussed before, when Pr is very large, there are
some approximated solutions of the boundary layers as
shown by Eq. (34). For non-negative stretching velocity
and positive m, when m is large enough, Eq. (34) is also
applicable. From Eq. (35), based on the series expansion
of the Gamma function for large m, it is obtained that

�g0ð0Þ ¼ 2ffiffiffi
3
p C 1þ 3m

4

� �
C 1

2
þ 3m

4

� � ffiffiffiffiffiffiffi
Prc

p
! lim

m!1
�g0ð0Þ ¼

ffiffiffiffiffiffiffiffiffiffi
mPrc

p
:

ð36Þ
When c = 0, from Eq. (30), one obtains for very large m,

�g0ð0Þ ¼ 3�
2
3
C 2

3

� �
Cð1þ mÞ

C 4
3

� �
C 2

3
þ m

� � Pr
1
3 ! lim

m!1
�g0ð0Þ

¼ 3�
2
3
C 2

3

� �
C 4

3

� � ðmPrÞ
1
3: ð37Þ
3.2.3. Numerical solution of the thermal boundary layers
3.2.3.1. Upper solution branch for c P 0. With more param-
eters involved in the thermal boundary layers, the variation
behaviors become quite complicated. Some temperature
profiles for different stretching parameters and temperature
power indices m are shown in Fig. 7 with Pr = 0.7. For
positive wall stretching, the thermal boundary layers are
closer to the wall compared with the non-moving-wall case.
With the increase of m, the thermal boundary layers
become thinner. The wall heat fluxes increase with the
increase of m and c for non-negative m. However, for
negative m, the maximum temperature gradient occurs in



Fig. 7. The thermal boundary layer profiles for different m and c with Pr = 0.7 for the upper branch solution.

Fig. 8. The relationship of �g0(0) to Pr for different m and c for the upper solution branch.
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the fluids not on the wall. The influence of the Prandtl
number on the wall heat flux is shown in Fig. 8. Results
show that the wall heat flux increases with the increase of
Pr, m, and c. The effects of power index m on the wall heat
fluxes are illustrated in Fig. 9 for different wall stretching
parameters and Prandtl numbers. For positive wall stretch-
ing, wall heat fluxes are increasing with the increase of Pr,
c, and m for m > � 2

3
. For m < � 2

3
, the heat is transferred



Fig. 9. The relationship of �g0(0) to m for different Pr and positive c of the upper solution branch.
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from the fluid to the wall and the heat flux increases with
increasing Pr and c. From the results, it is expected that
there is a certain value of m leading to an infinite heat flux
and no finite solution for that m.
Fig. 10. The thermal boundary layer profiles f
3.2.3.2. Solution for c < 0. Examples of the thermal bound-
ary layers for negative wall movement are illustrated in
Fig. 10. For the upper solution branch, the thermal bound-
ary layers are similar to those shown in Fig. 7. However,
or different m with c = �0.4 and Pr = 0.7.



Fig. 11. The relationship of �g0(0) to Pr for different with c = �0.4.

Fig. 12. The relationship of �g0(0) to m for different Pr with c = �0.4.
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the temperature gradients generally have their extreme val-
ues in the fluid with a distance from the wall. The lower
solution branch shows great different results. The bound-
ary layer thickness is much thicker than the upper branch,
and the thickness is increasing with the decrease of m. The
temperature gradients at the wall are opposite to the upper



Fig. 13. The relationship of �g0(0) to m when m is close to � 2
3

for the lower solution branch with Pr = 5.0 and c = �0.4.

Fig. 14. The thermal boundary layer profiles for the lower solution branch of c = �0.4 under different Pr with m = �0.6.
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branch, and they are increasing with the decrease of m. For
the lower branch, a positive temperature gradient occurs at
the wall, in another word, the heat is transferred from the
fluid to the wall. Without viscous dissipation, this seems
not happen in a practical problem because the fluid temper-
ature is less than the wall temperature. However, it is
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possible for negative temperature power index m with posi-
tive wall stretching. Recalling the analytical solution for
non-moving wall problem in Eqs. (29) and (30). It is shown
that the wall becomes adiabatic for m ¼ � 2

3
. There still

exists solutions for Eq. (29) when �1 < m < � 2
3
. In this

solution domain, the wall heat flux is negative with heat
transferred from the fluid to the wall. The physical explana-
tion is due to the negative power index. For negative power
indices, the wall temperature decreases with the distance
from the leading edge. The fluid temperature in the
upstream has higher temperature than a location in the
downstream. The heat from the upstream hotter fluid is
transferred to the colder fluid and wall in the downstream.
This can only explain the situation with no wall movement
or positive wall movement because the fluid moves in the
same direction as the wall moving direction. However,
the results in Fig. 10 occur for a positive power index,
i.e. m ¼ 1

3
. The reason for this is due to the negative wall

moving velocity. As a matter of fact, for a negative moving
wall, with a positive m, the heat is transferred from the
downstream hotter fluid to the upstream colder fluid and
the wall. Here the ‘‘upstream” and ‘‘downstream” are
defined based on the free stream flow direction. The wall
heat fluxes become quite complicated when the parameters
change. As seen in Fig. 11, for negative wall stretching and
negative m, the wall heat fluxes does not necessarily
increase with the increase of the Prandtl number. For the
upper solution branch, the wall heat flux first increases
and then drops down for certain m with the increase of
the Prandtl numbers. For the lower solution branch, m
Fig. 15. The thermal boundary layer profiles for the lower solution
plays an important role in affecting the wall heat flux.
There are quite big differences for different values of m.
For a negative m, the wall heat flux increases with the
increase of Pr. However for a positive m, the wall heat flux
changes its sign from wall-to-fluid to fluid-to-wall. For a
large Pr, the heat flux from the fluid to the wall increases
with increasing Pr.

The effects of power index m on the wall heat fluxes are
shown in Fig. 12. For the upper branch, the temperature
gradient first increases with m and then drops down and
also changed the sign from positive to negative with m

passing � 2
3
. There is an obvious limiting value of m for dif-

ferent Prandtl numbers leading to no finite solution. For
the lower solution branch, the behaviors look quite differ-
ent. The adiabatic wall seems not occur at m ¼ � 2

3
. The

heat flux drops from positive to negative and it is also obvi-
ous that there is a limiting m value making the solution infi-
nite for a certain Prandtl number. With the increase of Pr,
the limiting value becomes smaller. Based on the result of
the lower branch in Fig. 12, it seems that the solution is
not consistent with the analytical solution of Eq. (24) for
m ¼ � 2

3
. However, a further look at the solution near

m ¼ � 2
3

shows interesting results. An example is shown in
Fig. 13 for Pr = 5.0 and c = �0.4 with the lower solution
branch. From Fig. 13, when m is approaching � 2

3
from

the right, the solution becomes the same as the analytical
solution from Eq. (24). m ¼ � 2

3
is a separating line. When

m approaches � 2
3

from the left-hand side, the solution
becomes infinite when it is close enough to the vertical line.
This shows that the thermal boundary layers of the lower
branch of c = �0.4 with Pr = 5.0 and m = �0.7, �0.8, �0.9.



Fig. 16. The thermal boundary layer profiles for different m and c = 1.5 with Pr = 0.7 for the lower branch solution.
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solution branch are consistent with the analytical solution.
However, the thermal boundary layer itself can have very
complicated behaviors. Some examples are illustrated in
Fig. 14 for m = �0.6 for different Prandtl numbers at
c = �0.4. With the increase of the distance from the wall,
the fluid temperature first drops down, then increases,
and then decreases again to the ambient temperature.
Results from the solution to the left of m ¼ � 2

3
are shown

in Fig. 15 for different values of m. There are negative tem-
peratures in the boundary layers, which are not consistent
with the physical configurations. These solutions only have
mathematical meaning with no physical implementations.
Generally speaking, the unphysical solution only occurs
for certain negative temperature power and wall stretching
values.

3.2.3.3. Lower solution branch for c > 0. As seen in the
momentum boundary layers in previous section, the lower
solution branch shows quite interesting behaviors with
reversal flow for positive stretching. Even though the phys-
ical implementation of such a flow is quite difficult, it is
worthy of further investigation from the mathematical
point of view. An example of the thermal boundary layers
for different m and c = 1.5 with Pr = 0.7 for the lower
branch solution is shown in Fig. 16. The results for
m = 0 and m ¼ � 1

3
are similar to the temperature profiles

discussed above. However, for m ¼ 1
3
, there is negative tem-

perature occurring in the thermal boundary layer, which is
not consistent with the physical configuration for the cur-
rent problem. Generally speaking, the unphysical solution
occurs under certain temperature power index and wall
stretching parameters for the lower solution branch.
4. Conclusion

In this paper, the flow and heat transfer characteristics
of the boundary layers over a continuously stretching sur-
face with a uniform-shear free stream were investigated.
Some findings can be summarized as follows:

1. Dual solutions exist for certain wall stretching parame-
ters, namely �0.596985 < cc. There is only one solution
for cc = �0.596985. There is no solution for
cc < �0.596985.

2. With wall stretching, the free stream is no longer a Cou-
ette shear profiles. There is an induced free-stream veloc-
ity depending on the wall stretching parameter and
solution branch.

3. Analytical solutions were presented for some special
cases of thermal boundary layers with m ¼ � 2

3
and

m = 0.
4. Exact analytical solutions of the thermal boundary lay-

ers for non-stretching shear problem, namely c = 0, with
arbitrary Pr and m was derived. The limiting conditions
for large Pr and m were also solved analytically.

5. The thermal boundary layers are greatly affected by the
Prandtl number, the temperature power exponent, and
the wall stretching parameter. The variation trends are
relatively simple for positive c and m for the upper solu-
tion branch. However, for negative c and m and the
lower solution branch, the boundary layer flow becomes
more interesting and difficult to predict.

6. The flow and heat transfer characteristics of the bound-
ary layers over a stretching surface in the presence of a
uniform-shear free stream are greatly different from
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the boundary layers with rotation-free free-stream
conditions.

Acknowledgements

The author expresses his sincere appreciation to the
reviewers for their time and interests and constructive
comments.

References

[1] T. Altan, S. Oh, H. Gegel, Metal Forming Fundamentals and
Applications, American Society of Metals, Metals Park, OH, 1979.

[2] E.G. Fisher, Extrusion of Plastics, Wiley, New York, 1976.
[3] Z. Tadmor, I. Klein, Engineering principles of Plasticating Extrusion,

Polymer Science and Engineering Series, Van Norstrand Reinhold,
New York, 1970.

[4] B.C. Sakiadis, Boundary-layer behavior on continuous solid surface:
I. Boundary-layer equations for two-dimensional and axisymmetric
flow, J. AIChe. 7 (1961) 26–28.

[5] B.C. Sakiadis, Boundary-layer behavior on continuous solid surface:
II. Boundary-layer on a continuous flat surface, J. AIChe 7 (1961)
221–225.

[6] F.K. Tsou, E.M. Sparrow, R.J. Goldstain, Flow and heat transfer in
the boundary layer on a continuous moving surface, Int. J. Heat Mass
Transfer 10 (1967) 219–235.

[7] L.J. Crane, Flow past a stretching plate, Z. Angew. Math. Phys. 21
(4) (1970) 645.

[8] B.K. Dutta, P. Roy, A.S. Gupta, Temperature field in flow over a
stretching sheet with uniform heat flux, Int. Commun. Heat Mass
Transfer 12 (1985) 89–94.

[9] L.J. Grubka, K.M. Bobba, Heat transfer characteristics of a
continuous stretching surface with variable temperature, ASME J.
Heat Transfer 107 (1985) 248–250.

[10] C.K. Chen, M.I. Char, Heat transfer of a continuous stretching
surface with suction and blowing, J. Math. Anal. Appl. 135 (1988)
568–580.

[11] M.E. Ali, On thermal boundary layer on a power law stretched
surface with suction or injection, Int. J. Heat Fluid Flow 16 (1995)
280–290.

[12] E.M.A. Elbashbeshy, Heat transfer over a stretching surface with
variable surface heat flux, J. Phys. D: Appl. Phys. 31 (1998) 1951–
1954.

[13] T.A. Abdelhafez, Skin friction and heat transfer on a continuous flat
surface moving in a parallel free stream, Int. J. Heat Mass Transfer 28
(1985) 1234–1237.

[14] P.R. Chappidi, F.S. Gunnerson, Analysis of heat and momentum
transport along a moving surface, Int. J. Heat Mass Transfer 32
(1989) 1383–1386.
[15] N. Afzal, A. Badaruddin, A.A. Elgarvi, Momentum and heat
transport on a continuous flat surface moving in a parallel stream,
Int. J. Heat Mass Transfer 36 (13) (1993) 3399–3403.

[16] C.Y. Wang, The boundary layers due to shear flow over a still fluid,
Phys. Fluids A 4 (6) (1992) 1304–1306.

[17] P.D. Weidman, D.G. Kubitschek, Boundary layer similarity flow
driven by power-law shear, Acta Mechan. 120 (1–4) (1997) 199–
215.

[18] E. Magyari, B. Keller, I. Pop, Boundary-layer similarity flows driven
by a power-law shear over a permeable plane surface, Acta Mechan.
163 (3–4) (2003) 139–146.

[19] G.E. Cossali, Similarity solutions of energy and momentum boundary
layer equations for a power-law shear driven flow over a semi-infinite
flat plate, Eur. J. Mech. B Fluid. 25 (1) (2006) 18–32.

[20] M. Guedda, A note on boundary-layer similarity flows driven by a
power-law shear over a plane surface, Fluid Dyn. Res. (2007),
doi:10.1016/j.fluiddyn.2006.11.005.

[21] G.E. Cossali, Power series solutions of momentum and energy
boundary layer equations for a power-law shear driven flow over a
semi-infinite flat plate, Int. J. Heat Mass Transfer 49 (21–22) (2006)
3977–3983.

[22] E. Magyari, B. Keller, I. Pop, Heat transfer characteristics of a
boundary-layer flow driven by a power-law shear over a semi-infinite
flat plate, Int. J. Heat Mass Transfer 47 (1) (2004) 31–34.

[23] E. Magyari, P.D. Weidman, Thermal characteristics of the Airy wall
jet for constant surface heat flux, Heat Mass Transfer 42 (9) (2006)
813–816.

[24] E. Magyari, P.D. Weidman, The preheated Airy wall jet, Heat Mass
Transfer 41 (11) (2005) 1014–1020.

[25] E. Magyari, P.D. Weidman, Heat transfer on a plate beneath
an external uniform shear flow, Int. J. Therm. Sci. 45 (2) (2006) 110–
115.

[26] C.Y. Wang, Shear flow over a wall with variable temperature, ASME
Trans. J. Heat Transfer 113 (1991) 496–498.

[27] F.M. White, Viscous Fluid Flow, second ed., McGraw-Hill, New
York, 1991.

[28] S. Goldstein, On backward boundary layers and flow in converging
passages, J. Fluid Mech. 21 (1965) 33–45.

[29] J.P. Klemp, A. Acrivos, A moving-wall boundary layer with reverse
flow, J. Fluid Mech. 53 (1) (1972) 177–191.

[30] K. Vajravelu, R.N. Mohapatra, On fluid dynamic drag reduction in
some boundary layer flows, Acta Mechan. 81 (1990) 59–68.

[31] T. Fang, Further study on a moving-wall boundary-layer problem
with mass transfer, Acta Mechan. 163 (3–4) (2003) 183–188.

[32] M.Y. Hussaini, W.D. Lakin, A. Nachman, On similarity solution of a
boundary layer problem with upstream moving wall, SIAM J. Appl.
Math. 7 (4) (1987) 699–709.

[33] S. Wolfram, Mathematica – A System for Doing Mathematics by
Computer, second ed., Addison-Wesley Publishing Company, Inc.,
New York, 1993.

http://dx.doi.org/10.1016/j.fluiddyn.2006.11.005

	Flow and heat transfer characteristics of the boundary layers over a stretching surface with a uniform-shear free stream
	Introduction
	Mathematical formulation
	Results and discussion
	Momentum boundary layer
	Thermal boundary layer
	Analytical solution for m=-2/3 and m=0
	Exact solution for  gamma =0 and arbitrary m
	Numerical solution of the thermal boundary layers
	Upper solution branch for  gamma  ges 0
	Solution for  gamma  lt 0
	Lower solution branch for  gamma  gt 0



	Conclusion
	Acknowledgements
	References


